Skip to content
Scan a barcode
Scan
Paperback Data Science Algorithms for Unsupervised Learning: CLUSTER ANALYSIS AND KNN CLASSIFIERS. Examples with MATLAB Book

ISBN: B0DQ6HNPC9

ISBN13: 9798230976653

Data Science Algorithms for Unsupervised Learning: CLUSTER ANALYSIS AND KNN CLASSIFIERS. Examples with MATLAB

Artificial Intelligence and Data Science combines mathematical algorithms and techniques from Machine Learning, Deep Learning and Big Data to extract the knowledge contained in the data and present it in an understandable and automatic way. In the field of Artificial Intelligence and Data Science, we can highlight two types of learning that are widely used to train machines and devices to understand a set of data: supervised learning and unsupervised learning. supervised learnig techniques trains a model on known input and output data so that it can predict future outputs, and unsupervised learning techniques finds hidden patterns or intrinsic structures in input data. Unsupervised learning is more closely aligned with Artificial Intelligence as it gives the idea that a machine can learn to identify complex processes and patterns without the need for a human to provide guidance and supervision throughout the learning process. This book develops unsupervised learning techniques including cluster analysis, hierarchical cluster analysis, nonhierarchical cluster analysis, clustering with gaussian mixture models, clustering with hidden Markov models, Markov chaines, nearest neighbors classifiers, kNN classifiers, cluster visualization and cluster evaluation

Recommended

Format: Paperback

Temporarily Unavailable

We receive fewer than 1 copy every 6 months.

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured
Timestamp: 4/11/2025 8:07:46 PM
Server Address: 10.20.32.102